Qudit surface codes and gauge theory with finite cyclic groups

نویسندگان

  • Stephen S. Bullock
  • Gavin K. Brennen
چکیده

Surface codes describe quantum memory stored as a global property of interacting spins on a surface. The state space is fixed by a complete set of quasi-local stabilizer operators and the code dimension depends on the first homology group of the surface complex. These code states can be actively stabilized by measurements or, alternatively, can be prepared by cooling to the ground subspace of a quasi-local spin Hamiltonian. In the case of spin-1/2 (qubit) lattices, such ground states have been proposed as topologically protected memory for qubits. We extend these constructions to lattices or more generally cell complexes with qudits, either of prime level or of level d for d prime and l ≥ 0, and therefore under tensor decomposition, to arbitrary finite levels. The Hamiltonian describes an exact Zd ∼= Z/dZ gauge theory whose excitations correspond to abelian anyons. We provide protocols for qudit storage and retrieval and propose an interferometric verification of topological order by measuring quasi-particle statistics. Qudit surface codes and gauge theory with finite cyclic groups 2

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Skew Cyclic Codes over a Finite Ring

In this paper, we classify the skew cyclic codes over Fp + vF_p + v^2F_p, where p is a prime number and v^3 = v. Each skew cyclic code is a F_p+vF_p+v^2F_p-submodule of the (F_p+vF_p+v^2F_p)[x;alpha], where v^3 = v and alpha(v) = -v. Also, we give an explicit forms for the generator of these codes. Moreover, an algorithm of encoding and decoding for these codes is presented.

متن کامل

The Permutation Groups and the Equivalence of Cyclic and Quasi-Cyclic Codes

We give the class of finite groups which arise as the permutation groups of cyclic codes over finite fields. Furthermore, we extend the results of Brand and Huffman et al. and we find the properties of the set of permutations by which two cyclic codes of length p can be equivalent. We also find the set of permutations by which two quasi-cyclic codes can be equivalent.

متن کامل

Finite Heisenberg Groups from Nonabelian Orbifold Quiver Gauge Theories

A large class of orbifold quiver gauge theories admits the action of finite Heisenberg groups of the form ∏ i Heis(Zqi × Zqi). For an Abelian orbifold generated by Γ, the qi shift generator in each Heisenberg group is one cyclic factor of the Abelian group Γ. For general non-Abelian Γ, however, we find that the shift generators are the cyclic factors in the Abelianization of Γ. We explicitly sh...

متن کامل

ساختار فاز میدانهای پیمانه‌ای شبکه‌ای دو بعدی U(N) با کنش مختلط

  We study the phase structure of two dimensional pure lattice gauge theory with a Chern term. The symmetry groups are non-Abelian, finite and disconnected sub-groups of SU(3). Since the action is imaginary it introduces a rich phase structure compared to the originally trivial two dimensional pure gauge theory. The Z3 group is the center of these groups and the result shows that if we use one ...

متن کامل

Finite $p$-groups and centralizers of non-cyclic abelian subgroups

A $p$-group $G$ is called a $mathcal{CAC}$-$p$-group if $C_G(H)/H$ is ‎cyclic for every non-cyclic abelian subgroup $H$ in $G$ with $Hnleq‎ ‎Z(G)$‎. ‎In this paper‎, ‎we give a complete classification of‎ ‎finite $mathcal{CAC}$-$p$-groups‎.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006